جستجوي پيشرفته | کتابخانه مجازی الفبا

جستجوي پيشرفته | کتابخانه مجازی الفبا

کتابخانه مجازی الفبا،تولید و بازنشر کتب، مقالات، پایان نامه ها و نشریات علمی و تخصصی با موضوع کلام و عقاید اسلامی کتابخانه مجازی الفبا،تولید و بازنشر کتب، مقالات، پایان نامه ها و نشریات علمی و تخصصی با موضوع کلام و عقاید اسلامی

فارسی  |   العربیه  |   English  
telegram

در تلگرام به ما بپیوندید

public

کتابخانه مجازی الفبا
کتابخانه مجازی الفبا
header
headers
پایگاه جامع و تخصصی کلام و عقاید و اندیشه دینی
جستجو بر اساس ... همه موارد عنوان موضوع پدید آور جستجو در متن
: جستجو در الفبا در گوگل
مرتب سازی بر اساس و به صورت وتعداد نمایش فرارداده در صفحه باشد جستجو
  • تعداد رکورد ها : 19
فلسفه ریاضیات [کتاب عربی]
نویسنده:
محمد ثابت الفندي
نوع منبع :
کتاب , کتابخانه عمومی
منابع دیجیتالی :
وضعیت نشر :
بیروت - لبنان: دار النهضة العربیة للطباعة والنشر,
فلسفه طبیعی اسحاق نیوتن [کتاب انگلیسی]
نویسنده:
Jed Z. Buchwald, I. Bernard Cohen (ed.)
نوع منبع :
کتاب
منابع دیجیتالی :
وضعیت نشر :
The MIT Press,
چکیده :
ترجمه ماشینی: مطالعات نیوتن در نیم قرن گذشته دستخوش تغییرات اساسی شده است زیرا کارهای بیشتری از او کشف شده و جزئیات بیشتری از زندگی و زمینه فکری او آشکار شده است. این جلد در مطالعات اخیر نیوتن دو رشته را مشخص می کند: پیشینه فکری اندیشه علمی نیوتن و هر دو جنبه خاص و کلی علم فنی او. این مقالات ادعاهای جدیدی در مورد روش‌های ریاضی، تحقیقات تجربی و انگیزه‌های نیوتن، و همچنین تأثیری که حضور طولانی او بر علم در انگلستان داشت، ارائه می‌کنند. کتاب به دو بخش تقسیم می‌شود. مقاله‌های بخش اول، انگیزه‌های نیوتن و منابع روش او را روشن می‌کنند. مقالات بخش دوم به بررسی فلسفه ریاضی نیوتن و توسعه مکانیک عقلانی و دینامیک سماوی می پردازند. یک ضمیمه شامل آخرین مقاله ریچارد دبلیو. وستفال، زندگی نامه نویس نیوتن است که به بررسی برخی از راه هایی می پردازد که ریاضیات در عصر نیوتن در تعقیب ها و حوزه هایی غیر از مکانیک نظری یا عقلانی مورد استفاده قرار گرفت.
واقعیت اعداد: فلسفه ریاضیات فیزیکی‌انگار [کتاب انگلیسی]
نویسنده:
John Bigelow
نوع منبع :
کتاب
منابع دیجیتالی :
چکیده :
ترجمه ماشینی: این کتاب با در نظر گرفتن ماتریالیسم متافیزیکی، نور جدیدی بر ریاضیات می افکند. نویسنده اعداد و مجموعه های طبیعی، واقعی و خیالی را با ویژگی ها و روابط فیزیکی مشخص شناسایی می کند. نظریه مجموعه ها ما را به درک نادرست از ماهیت ریاضیات وسوسه می کند. بیگلو این افسانه را به چالش می کشد که اشیاء ریاضی را می توان در وجود تعریف کرد. با بازسازي اعداد به عنوان ويژگي ها يا روابط فيزيكي واقعي، غيرزباني، رياضيات را مي توان از تبعيد عقيم و انتزاعي خود به ميان دنياي فيزيكي كه ما به آن تعلق داريم، عقب كشيد.
اصول ریاضی [کتاب انگلیسی]
نویسنده:
(برتراند راسل)Alfred North Whitehead, Bertrand Russel(آلفرد نورث وایتهد)
نوع منبع :
کتاب , کتابخانه عمومی
منابع دیجیتالی :
 کتابچه تاریخ منطق. جلد 6: مجموعه ها و دنباله ها در قرن بیستم [کتاب انگلیسی]
نویسنده:
Dov M. Gabbay, Akihiro Kanamori, John Woods
نوع منبع :
کتاب , کتابخانه عمومی
منابع دیجیتالی :
فلسفه علم، فلسفه منطق و فلسفه رياضی در قرن بیستم
نویسنده:
استوارت.جی شنکر
نوع منبع :
کتابشناسی(نمایه کتاب) , ترجمه اثر
وضعیت نشر :
تهران: حکمت,
چکیده :
مجموعة «تاریخ فلسفة غرب»، مروری بر فلسفة غرب را به ترتیب زمانی، از سرآغاز آن در قرن ششم پیش از میلاد تا عصر حاضر، فراهم می‌آورد. این کتاب، همة جریان‌های بزرگ فلسفی را مورد بررسی قرار می‌دهد. این مجموعه که در ده جلد فراهم شده، اطّلاعات بنیادی و انتقادی دربارة همة فیلسوفان مهمّ گذشته و حال را در اختیار می‌گذارد و تصویر روشنی از آن‌ها در بستر فرهنگی و علمی روزگارشان ارائه می‌دهد.در کتاب تاریخ فلسفه‌ی راتلج - جلد نهم: فلسفه علم، منطق و ریاضیات در قرن بیستم به موضوعاتی چون فلسفه‌ی منطق و ریاضیات، فلسفه‌ی فیزیک، فلسفه‌ی علم، پوزیتیویسم منطقی و سایبرنتیک پرداخته شده و آرای فیلسوفانی چون فرگه و ویتگنشتاین توضیح داده می‌شود. شانکر در ابتدای این جلد یک گاه‌شماری از رویدادهای بزرگ علمی و فلسفی قرن بیستم آورده است که برای علاقه‌مندان به فلسفه‌ی علم، بسیار مفید خواهد بود. همچنین پس از مقاله‌ها، واژه‌نامه‌ای از اصطلاحات فنی استفاده‌شده در کتاب آمده است تا خوانندگانی که رشته‌شان با فلسفه و ریاضیات نیز مرتبط نیست، بتوانند مقاله‌ها را به‌راحتی مطالعه کنند.
از ارس‍طو ت‍ا گ‍ودل‌: م‍ج‍م‍وع‍ه‌ م‍ق‍ال‍ه‌ه‍ای‌ ف‍ل‍س‍ف‍ی‌ - م‍ن‍طق‍ی‌
نویسنده:
ض‍ی‍ا، موحد
نوع منبع :
کتابشناسی(نمایه کتاب) , مجموعه مقالات
وضعیت نشر :
تهران: هرمس,
چکیده :
مقالات این مجموعه، برگزیده ای است از نوشته های فلسفی _ منطقی "ضیاء موحد" که در قالب چهار بخش تدوین شده است : 1_ فلسفه منطق و زبان، 2 _ نقد منطق سنتی، 3 _ معرفی دو فیلسوف قرن بیستم ("ای .جی . ایر" و "ویلارد وَن اورمن کواین")، 4 _ فلسفه ریاضی ("مسئله پیوستار کانتور چیست ؟/ کورت گودل" و "صدق ریاضی / پال بنا سراف". "مقاله های بخش اول، بیشتر جنبه توضیحی و تعلیمی دارند. مقاله "مفهوم صورت در منطق جدید" نقدی است بر پیشنهادی از مرحوم دکتر حائری یزدی که قضیه های جزئی را هم به قیاس قضیه های کلی تاویل به شرطی کرده بودند... در این مقاله نقص این تاویل و ایرادهای آن به تفصیل شرح داده شده است....".
شفاء المجلد 8
نویسنده:
حسین بن عبدالله ابن سینا؛ ناظر: إبراهیم مدکور؛ محققان: عبدالحمید صبره، عبدالحمید لطفي مظهر
نوع منبع :
کتاب , کتابخانه عمومی
منابع دیجیتالی :
وضعیت نشر :
قم: مکتبة سماحة آیة الله العظمی المرعشی النجفی الکبری,
کلیدواژه‌های اصلی :
فهرست گزیده متکلمان،فیلسوفان و عالمان شیعی :
چکیده :
شيخ الرئيس، كتاب(الشفاء) را به زبان عربى و در موضوعات الهيات، طبیعیات، رياضيات و منطق تأليف كرده است. مى‌توان اين كتاب را به عنوان جامع‌ترين اثر بوعلى، به حساب آورد. وى، در مورد موضوع‌هاى ياد شده، در كتاب‌هاى ديگرى نيز سخن گفته است كه به آنها اشاره خواهيم كرد، لكن چيزى كه در كتاب شفا با آن روبه‌رو هستيم، مجموعه‌اى است كامل و دقيق كه ترجمه يا تلخيص مطالب آن در كتاب‌هاى ديگرش، همچون نجات و دانش‌نامه‌ى علايى آمده است. كتاب(الشفاء) داراى چهار بخش طبیعیات، رياضيات، منطق و الهيات است. قسمت رياضيات كتاب شفا، در چهار بخش هندسه با پانزده مقاله، حساب با چهار مقاله، موسيقى با شش مقاله و هيئت با سيزده مقاله تنظيم شده است كه هر كدام از آنها نشان‌گر تسلط و احاطه‌ى مؤلف بر اين علوم مى‌باشد. هندسه: بخش اول رياضيات يا به عبارتى فن اول رياضيات كه عبارت است از هندسه، در واقع تحليل و بررسى اصول اقليدس مى‌باشد كه توسط حجاج بن يوسف مطر، به عربى ترجمه شده است. البته ترجمه‌هاى ديگرى نيز موجود است كه مى‌توان حجاج بن يوسف را اولين مترجم اصول اقليدس به حساب آورد. بوعلى، در بخش هندسه بر خلاف خود اقليدس و مترجم آن، به تفصيل نپرداخته و فقط به مطالبى كه براى درك قضايا و اثبات آنها لازم است، پرداخته است. مقصود ابن سينا اين است كه متعلم را هر چه سريع‌تر با مبانى هندسه آشنا سازد. وى به گفته شاگرد و دوستش، ابوعبيد جوزجانى، ابتدا كتابى به نام مختصر اقليدس، تأليف كرد كه بعدا بخشى از كتاب شفا را تشكيل داد. ابن سينا، بخش هفتم كتاب نجات را نيز به هندسه اختصاص داده است. نظريات ابن سينا در رياضيات هنوز كاملا مورد بررسى قرارنگرفته است، ولى كارل لوكوچ، بخشى از فن اول رياضيات شفا (هندسه مسطحه) را در كتاب خود مورد بررسى قرار داده است. هندسه، به نظر ابن سينا، يكى از علوم رياضى، بلكه اولين علم از علوم رياضى است كه متكفل آموزش اوضاع خطوط، اشكال سطوح و انحطام مقادير مى‌باشد. مقاله اول از بخش هندسه رياضيات شفا، در تعريف مثلث و متوازى الاضلاع مى‌باشد. اولين مطلبى كه در اين مقاله بيان مى‌گردد، تعريف نقطه و خط است. مؤلف، نقطه را به شىء ما لا جزء له و خط را به طول بلا عرض و طرفاه نقطتان، تعريف مى‌كند، سپس به تعريف زاويه‌ى قائمه، حاده و منفرجه مى‌پردازد. در ادامه انواع مثلث كه عبارتند از: متساوى الاضلاع، متساوى الساقين، مختلف الاضلاع و قائم الزاوية بيان شده، سپس مربع و مستطيل و اشكالى كه چهار ضلعى مى‌باشند، با انواع گوناگونشان مورد بررسى قرار گرفته‌اند. ديگر اشكال چند ضلعى و تعريف دو خط موازى نيز در بخش مقدمه مقاله اول هندسه مطرح گرديده‌اند. ابن سينا، در بخشى به نام علم جامع، كيفيت به دست آمدن مثلث متساوى الاضلاع از دو دايره را بيان كرده است. مقاله‌ى دوم در مورد خط مستقيم و تقسيمات آن مى‌باشد. وى اين بخش را با تعريف مربع به سطح قائم الزاويايى كه خطوط محيط به زاويه قائمه بر آن احاطه دارند، آغاز مى‌كند. چگونگى به دست آمدن مربع و انواع آن نيز در اين بخش مورد بررسى قرار گرفته است. مقاله‌ى سوم در مورد دايره است. ابن سينا، مى‌گويد: در دايره تمام قطرها و نصف قطرها كه امروزه شعاع گفته مى‌شود، با هم‌ديگر مساوى هستند. به دست آوردن مركز دايره، نقطه مماس دو دايره و مطالبى از اين قبيل نيز در همين مقاله مطرح شده‌اند. مقاله‌ى چهارم، در مورد عمليات مثلث‌ها و دايره‌ها است. شكل محيط، اولين مبحث اين بخش مى‌باشد. مقاله‌ى پنجم در مورد نسبت مى‌باشد. شيخ الرئيس، در اين بخش، جزء را به مقدار كوچك‌تر از مقدار بزرگ‌تر معرفى مى‌كند و... سطوح متشابهه، عنوان مقاله ششم است. بوعلى سطوح متشابهه را به زواياى متساويه و اضلاع تناسبيه‌ى آنها معنا مى‌كند و مى‌گويد: سطوح متكافئه، سطوحى هستند كه اضلاعشان بنا بر تقدم و تأخر با هم متناسب مى‌باشند. مقاله هفتم درباره اشتراك و تباين و...است. در اين مقاله، راجع به وحدت، عدد، زوج و فرد توضيحاتى داده شده است؛ براى مثال مى‌فرمايد: واحد، به هر چيزى كه عقلاً قابل قسمت نباشد، گفته مى‌شود و عدد، جماعت مركبى از واحدها است. عدد زوج، عددى است كه قابل قسمت به دو عدد مساوى باشد. هشتمين مقاله، متعلق به بحث متواليات و نهمين مقاله در ادامه آن مى‌باشد و عنوان «متواليات و ما يتصل بها من عوامل و غيرها» را به خود اختصاص داده است. مقاله دهم، در اشتراك و تباين است و در ادامه خطوط مشترك توضيح داده شده است كه مثل ساير بخش‌ها با اشكال گوناگونى همراه است. يازدهمين مقاله، درباره هندسه فراغيه مى‌باشد. در اين قسمت، اشكال به مجسم، منشور و مخروط و استوانه تقسيم شده و هر كدام با توضيح و تعريف خاص خودش مورد بررسى واقع گرديده و شيوه محاسبه هر كدام، با ترسيم اشكالى بيان شده است. مقاله دوازدهم، كثيرات السطوح نام دارد كه در واقع بحث از اشكالى است كه داراى چند سطح مختلف مى‌باشند. عناوين مقاله سيزدهم، چهاردهم و پانزدهم به ترتيب عبارت است از: «القسمة ذات الوسط و الطرفين و المضلعات المنتظمة»، «القسمة ذات الوسط و الطرفين و المجسمات المنتظمة» و «رسم مجسمات منتظمة داخل بعضها». حساب: دومين بخش رياضيات، علم حساب است. ابن سينا، اين بخش را در قالب چهار مقاله توضيح داده است كه مقاله اول، در خواص عدد؛ مقاله دوم، در احوال عدد از حيث اضافه شدنش به غير؛ مقاله سوم، در احوال عدد از حيث تأليفش از واحدها و مقاله چهارم، در متواليات ده‌گانه است. مؤلف، در جاهاى ديگر همچون كتاب قاطيغورياس و... از ماهيت عدد و اقسام آن سخن گفته است. برخى از مسائل مطرح شده در اين مقاله عبارتند از: هر عددى نصف مجموع دو عدد زيرين و رويين خويش است، چنان‌كه پنج، نصف حاصل جمع شش و چهار مى‌باشد؛ مربع هر عددى مساوى است با حاصل ضرب دو عدد زيرين و رويين آن به اضافه يك، چنان‌كه مربع پنج، برابر است با حاصل ضرب شش در چهار به اضافه يك(بيست و پنج) و... مقاله دوم، در باب احوال عدد است از جهت اضافه شدنش به غير. ابن سينا، مى‌گويد: در باب عدد، دو نگاه به عدد ممكن است: اول، نگاه به عدد از باب اينكه في نفسه معتبر است و ديگرى از اين جهت كه اضافه به عددى ديگر مى‌گردد. احوال عدد از حيث كيفيت تأليفش از واحدها، عنوان مقاله سوم است. مقاله چهارم در متواليات ده‌گانه مى‌باشد كه در آن مناسبات و اصناف و خواص آن مطرح گرديده است. موسيقى: سومين بخش رياضيات، علم موسيقى است كه بوعلى، خود، آن را «جوامع علم الموسيقى» ناميده است. اين بخش، حاكى از تسلط قابل توجه مؤلف بر علم موسيقى است و البته اين تسلط در ديگر علما و دانشمندان زمان ابن سينا نيز كم و بيش مشهود است. موسيقى در عصر مؤلف، در هزار سال پيش، بسيار مورد توجه بوده است و بسيارى آن را پيشه خود مى‌ساختند و در جامعه ارجمند بودند. فضلا و امرا و پادشاهان آن را دوست مى‌داشتند و اغلب، خود، نيز مى‌آموختند. موسيقى، فن و علمى صاحب شأن بوده است و به اين سبب دانشمندان مشرق زمين چون كندى، فارابى، خوارزمى، اخوان الصفا و ديگران به آن توجه داشتند و آن را توسعه داده ومورد مباحثه و تدريس و عمل قرار مى‌دادند و راجع به آن كتاب مى‌نوشتند. ابن سينا از بزرگان علماى موسيقى و مشاهير موسيقى‌دانان زمان خود بوده و مباحث اصلى موسيقى را با نهايت دقت، تشريح نموده است. اين، تعجبى ندارد، چه اين فيلسوف شهير، دامنه فكرى خود را به ناحيه خاصى از دانش محدود نكرده، بلكه نواحى مختلف معرفت و ضمن آنها موسيقى را نيز پيموده است و آن را از اقسام چهارگانه حكمت رياضى شمرده و در كنار علم حساب، هندسه و علم هيئت قرار داده است. بوعلى، سه كتاب در موسيقى دارد كه دو تاى آنها به عربى و سومى را به فارسی نگاشته است. مهم‌تر از همه در كتاب شفا است و آنچه در كتاب نجات است، در واقع خلاصه‌اى از شفا مى‌باشد و فارسی آن در دانش‌نامه علايى است كه خلاصه‌اى از كتاب نجات است و معروف است كه قسمت موسيقى دانش‌نامه را جوزجانى، شاگرد بوعلى، بعد از وفاتش به رشته تحرير درآورده است. ابن سينا، در موسيقى شفا، به دو كتاب ديگر اشاره مى‌كند كه در آن بعضى از مباحث موسيقى را شرح داده است؛ اين دو، يكى كتاب البرهان است و ديگرى كتاب اللواحق. ابن ابى‌اصيبعه، خبر داده كه بوعلى، كتاب ديگرى به نام «المدخل الى صناعة الموسيقى» نگاشته است كه موضوع آن با قسمت موسيقى كتاب النجات متفاوت است. متأسفانه سه كتاب مزبور، تا كنون به دست نيامده است. مهم‌ترين كتاب موسيقى ابن سينا، قسمت موسيقى شفا است كه از نفيس‌ترين مراجع موسيقى ايران شمرده مى‌شود و تا آن‌جا كه بر ما مكشوف است، اين اثر، توسط بارون‌درلانژر به فرانسه ترجمه شده و موسيقى عربى نام گرفته است. موسيقى شفاى ابن سينا، شامل شش مقاله است كه هر يك به ترتيب زير فصولى دارد: مقاله اول، شامل پنج فصل است: فصل اول، در تعريف موسيقى و اسباب صوت و... است. فصل دوم، در شناخت ابعاد متفقه و ابعاد متنافره و... است. فصل سوم، در ابعاد متفقه به اتفاق اصلى است. فصل چهارم، در ابعاد متفقه به ابعاد بدلى است. مقاله دوم، داراى دو فصل است كه اولى، در جمع كردن بعضى از ابعاد با برخى ديگر و جدا كردن بعضى از بعضى ديگر مى‌باشد و دومى، در مضاعف و نصف كردن ابعاد است. مقاله سوم، شامل چهار فصل است كه فصل اول، در جنس و تقسيم آن به انواع است. فصل دوم، در تعداد اجناس است. فصل سوم، درباره اجناس قوى است. فصل چهارم، درباره اجناس ملايم است. مقاله چهارم، داراى دو فصل است كه اولى، در جماعت و دومى، در انتقال است. مقاله پنجم، شامل پنج فصل است كه اولى، در نت‌هاى موسيقى يا علم اوزان و دومى، در وزن‌خوانى يا حكايت آهنگ‌ها با زبان و سومى، در انواع اوزان متصل و منفصل و چهارمى، در اوزان چهار تايى، پنج تايى، شش تايى و اوزان معمولى و پنجمى در اوزان شعرى است. مقاله ششم، شامل دو فصل است كه اولى، در تركيب و تأليف آهنگ و دومى، در آلات موسيقى است. اغلب مستشرقين، به استناد اينكه فلاسفه مشرق، علماى يونان را شناخته و كتاب‌هاى آنها را به عربى ترجمه كرده و خوانده‌اند، گفتار آنها را در موسيقى بر پايه موسيقى يونان، استوار دانسته‌اند و حتى نظريات علمى آنان را بر موارد عملى موسيقى شرقى، منطبق نگرفته‌اند، چنان‌كه گويى بحث فارابى و بوعلى سينا در موسيقى، يك بحث رياضى بيش نبوده و بر عمل موسيقى آن زمان تطبيق نمى‌كرده است. اين‌گونه قضاوت، به نظر، بسيار نارواست، چه گام منسوب به فيثاغورث كه بر پايه‌ي عدد سه استوار است و پايه گام ملودى موسيقى غربى است، از هزارها سال پيش در چين به شكل خاصى مورد استعمال بوده است و مسلما از قديم در ايران وجود داشته است. فارابى، در شرح تنبور خراسان و درجه‌بندى آن، وجود چنين گامى را تأييد مى‌كند، در حالى كه در شرح تنبور بغداد كه گام آن معرف موسيقى عربى پيش از اسلام است، چنين درجه‌بندى وجود ندارد. چنانچه اين گام از يونان به ايران آمده باشد، بايد نخست از بغداد عبور كرده باشد. هم‌چنين گام منسوب به اريستكسن را كه پايه گام هارمونى مغرب است، در موسيقى هند و ايران مى‌توان يافت و دليلى نيست كه بگوييم موسيقى از يونان به ممالك شرق رفته است. بنا بر اين مباحث علمى موسيقى فارابى و بوعلى سينا، بر موسيقى علمى زمان خودشان تطبيق مى‌نموده و اين دانشمندان، اسرار آن را مكشوف و قوانين آن را پى‌ريزى كرده‌اند. روش بوعلى، در بحث و تحقيق درباره موسيقى، نشان مى‌دهد كه عقايد متقدمين يونانى خود؛ يعنى پيروان مكاتب فيثاغورث، افلاطون و بطلميوس را پيروى ننموده و به خصوص در مورد جست‌وجوى رابطه‌اى بين اوضاع و احوال آسمان و خواص روح و ابعاد موسيقى، عقايد آنان را صحيح ندانسته و فلسفه آنها را مندرس شمرده است و معتقد است كه آنان، صفات اصلى و كيفيات اتفاقى اشيا را به جاى هم گرفته‌اند و در شناختن حقايق اشيا راه صحيح نپيموده‌اند؛ آن‌جا كه در مقدمه، مى‌گويد: هم‌چنين از جست‌وجوى رابطه‌اى بين احوال آسمان و خواص روح و ابعاد موسيقى، خوددارى مى‌كنيم تا از روش كسانى كه از حقيقت هر علم آگاهى ندارند، پيروى نكرده باشيم، چه اينان وارث فلسفه‌اى مندرس مى‌باشند؛ صفات اصلى و كيفيات اتفاقى اشيا را به جاى هم مى‌گيرند و خلاصه كنندگان نيز از آنها تقليد كرده‌اند، ولى اشخاصى كه فلسفه حقيقى را فهميده و مشخصات صحيح اشيا را درك كرده‌اند، اشتباهاتى را كه در اثر تقليد رخ مى‌دهد، تصحيح نموده و غلطهايى را كه زيبايى‌هاى افكار كهنه را مى‌پوشاند، پاك كرده‌اند؛ اينان سزاوار تحسينند. بوعلى، در مباحث موسيقى، از فارابى پيروى كرده و عقايد او را تشريح نموده است و آنها را مختصر و مفيد و بدون تكرار تشريح نموده است و هر مطبى را به دلايل و براهين منطقى مستند نموده و در اين راه، نه تنها به اصول فيزيكى و رياضى تكيه مى‌كند كه دامنه بحث را به فلسفه و علم النفس نيز مى‌كشاند. مؤلف، در تعريف موسيقى، رابطه علم موسيقى را با علوم ديگر چنين توضيح مى‌دهد: «موسيقى، يكى از علوم رياضى است كه منظور از آن، مطالعه صداها و بحث در ملايمت و عدم ملايمت و هم‌چنين كشش آنها و قواعد ساختن قطعات موسيقى است، بنا بر اين علم موسيقى، شامل دو قسمت است: علم تركيب نغمات مربوط به صداهاى موسيقى و علم اوزان مربوط به زمان‌هايى كه صداهاى يك نغمه را از يك‌ديگر جدا مى‌سازد. پايه‌هاى اين دو قسمت بر اصولى استوار است كه از علومى خارج از موسيقى اخذ مى‌شوند؛ بعضى از اين اصول، از رياضى و بعضى ديگر، از فيزيك و علوم طبيعى و برخى، از هندسه گرفته مى‌شوند. وى در تعريف صدا، فلسفه وجود صدا و ماهيت آن را بيان مى‌كند و مى‌گويد: «صدا، يكى از پديده‌هاى خارجى است كه حواس ما درك مى‌كند و احساس آن ممكن است خوش‌آيند باشد...» صدا، از نظر احساس به خودى خود نمى‌تواند خوش‌آيند يا بدآيند باشد، فقط هنگامى كه بيش از اندازه شدت يابد، گوش ما از آن رنج مى‌برد. يك آلت موسيقى كه بيش از حد لازم قوى زده شود، صداى نامطبوع ايجاد مى‌كند كه به گوش، زننده است، ولى از طرف ديگر صدا مى‌تواند، نه از نظر احساس، بلكه از نظر رابطه‌اى كه با قوه‌ى شنوايى دارد و به وسيله آن تصويرى از صدا در ذهن ايجاد مى‌شود و هم‌چنين عملى كه در يك قطعه موسيقى دارا است، خوش‌آيند يا بدآيند باشد. در شرح علل زيرى و بمى صدا، قوانين ارتعاش را در اجسام روشن مى‌سازد و مى‌گويد: علل زيرى صدا، عبارتند از: اتصال شديد ذرات جسم و سختى آن، كوچكى ابعاد آن و زيادى نيروى كشش و... درجه‌ى زيرى و بمى، با زياد و كم شدن علل آن بستگى دارد؛ مثلاً تارى، با كشش ثابت، تغيير طول صداهايى با زير و بمى متفاوت ايجاد مى‌كند؛ هر چه طويل‌تر باشد، صدا بم‌تر است. تعيين درجه‌ى زير و بمى، به اندازه‌گيرى مقادير خواصى كه به آن اشاره شده، ميسر است. هم‌چنين مقايسه دو صدا، با مقايسه مقادير خواص مشابه آن، انجام مى‌شود؛ مثل مقايسه طول‌هاى آنها. بنا بر اين مسلم مى‌شود كه اولاً هر دو صدا به نسبت معينى از زيرى و بمى مى‌باشند و ثانيا مى‌توان نسبت بين آن دو را مشخص نمود. ابعاد ملايم و غير ملايم را با نسبت‌هاى مشخص، معرفى مى‌كند. ابعاد ملايم، آنهايى است كه صداهاى آن بالفعل يا بالقوه مشابه باشند. آنهايى كه بالفعل مشابهند، با نسبت‌هايى از اكتاو معرفى مى‌شوند و آنهايى كه بالقوه مشابهند، به صورت نسبت‌هايى به شكل n+1/n به اصطلاح نسبت‌هاى سوپر پارتيل مى‌باشند. در جمع و تفريق ابعاد، به پيروى از روش فارابى، ضرب و تقسيم نسبت‌هاى معرف آنها را به كار مى‌برد و اين عمل در حقيقت فكر ايجاد لگاريتم است. در تقسيم اجناس، گوش‌زد مى‌سازد كه مقادير 256/243 از نيم پرده كوچك‌تر است و با اينكه اين بعد به خودى خود جزء ابعاد غير ملايم است، ولى وجود آن در دنباله دو بعد ملايم 9/8 خوش‌آهنگ و مطبوع است، چنان‌كه مى‌دانيم اين جنس معرف گام ماهور ايرانى و ماژر موسيقى غربى است و امروزه جزء دستگاه‌هاى اصيل ايران شمرده مى‌شود. هم‌چنين بين اجناس، جنسى را ملايم‌تر از همه مى‌داند كه ابعاد آن به ترتيب 10/9 و 9/8 و 16/8 باشد و چنان‌كه مشهود است گام هارمونيك، از خواص فوق ساخته مى‌شود. وجود هارمون را به معناى امروزى كلمه قائل است و مى‌گويد: صداها ممكن است با هم يا پى در پى نواخته شوند، چنان‌كه مى‌دانيم براى ساختن آهنگ، صداهايى به كار مى‌روند كه پى درپى دنبال هم واقع مى‌شوند. وقتى چندين صدا با هم نواخته شوند، در حكم يك صدامى‌گردند، ولى چنانچه اختلاط آنها با اصول صحيح باشد، باعث تقويت فكرى مى‌گردد... در شرح عود و پرده‌بندى آن، دقت كامل به كار برده است و به خصوص روشى را به دست مى‌دهد كه فقط با تشخيص اكتاوهاى زير و بم، مى‌توان تمام پرده‌هاى عود را بست. بخشى از وسعت فكر و دقت علم مرحوم شيخ الرئيس، در مطالعات مباحث آواشناسى و موسيقى، با اين بيان مشخص گرديد.
  • تعداد رکورد ها : 19