جستجوي پيشرفته | کتابخانه مجازی الفبا

جستجوي پيشرفته | کتابخانه مجازی الفبا

کتابخانه مجازی الفبا،تولید و بازنشر کتب، مقالات، پایان نامه ها و نشریات علمی و تخصصی با موضوع کلام و عقاید اسلامی کتابخانه مجازی الفبا،تولید و بازنشر کتب، مقالات، پایان نامه ها و نشریات علمی و تخصصی با موضوع کلام و عقاید اسلامی

فارسی  |   العربیه  |   English  
telegram

در تلگرام به ما بپیوندید

public

کتابخانه مجازی الفبا
کتابخانه مجازی الفبا
header
headers
پایگاه جامع و تخصصی کلام و عقاید و اندیشه دینی
جستجو بر اساس ... همه موارد عنوان موضوع پدید آور جستجو در متن
: جستجو در الفبا در گوگل
مرتب سازی بر اساس و به صورت وتعداد نمایش فرارداده در صفحه باشد جستجو
  • تعداد رکورد ها : 1
 استدلال تقریبی معکوس و نقش عملگرهای استلزام
نویسنده:
خاطره آذرانداز
نوع منبع :
رساله تحصیلی
منابع دیجیتالی :
وضعیت نشر :
کرمان: دانشگاه آزاد اسلامی واحد کرمان,
چکیده :
نظریه مجموعه‌های فازی در سال 1965 توسط پروفسور عسکرزاده دانشمند ایرانی تبار استاد دانشگاه برکلی آمریکا عرضه شد. این نظریه از زمان ارائه آن تاکنون، گسترش و تعمیق زیادی یافته و کاربردهای گوناگونی در زمینه‌های مختلف پیدا کرده است . مجموعه‌های فازی نظریه‌ای است برای اقدام در شرایط عدم اطمینان. این نظریه قادر است بسیاری از مفاهیم و متغیرها و سیستمهایی را که نادقیق هستند، چنانچه در عالم واقع اکثرا چنین است ، صورتبندی ریاضی ببخشد و زمینه را برای استدلال، استنتاج، کنترل و تصمیم‌گیری در شرایط عدم اطمینان فراهم آورد. در این رساله که بر پایه مقاله تدوین شده است ما به نحوه استفاده از استدلال تقریبی معکوس می‌پردازیم بدین منظور که نتیجه (طرف دوم یک قاعده فازی) داده شده، مسئله مطرح شده انتخاب بهترین ورودی (طرف اول یک قاعده فازی) است که نتیجه مورد نظر را باعث شود که در اینجا ما از قاعده رفع تالی تعمیم یافته کمک خواهیم گرفت . در فصل اول به تعاریف اولیه مورد استفاده در رساله از جمله -t نرمها و -t هم‌نرمها و عملگرهای مربوط به مجموعه‌های فازی می‌پردازیم و همچنین در این فصل مروری بر منطق فازی و کلاسیک خواهیم داشت و روابط بین آنها را در منطق دوارزشی و فازی و ارتباط آنها با یکدیگر را مطالعه می‌نماییم. در فصل دوم استدلال تقریبی و استدلال تقریبی معکوس بررسی شده است . در آنجا این سوال مطرح می‌شود که اگر قاعده R:A--->B با تابع استلزام I مدلسازی شود آیا قاعده R*:not(B)-->not(A) هم با همان تابع مدلسازی می‌شود؟ بدین معنی که آیا رابطه I(a,b) I(1-b,1-a) (خاصیت تقارن عکس نقیض) برقرار است ؟ بنابراین چون استلزامهایی که دارای تقارن عکس نقیض هستند در استدلال تقریبی معکوس نقش مهمی را بازی می‌کنند در فصل سوم مفصلا به آنها می‌پردازیم. در این فصل -S استلزامها، -R استلزامها، -QLاستلزامها و ... معرفی می‌شوند و استلزامهایی که خاصیت تقارن عکس نقیض را دارا بوده و یا با داشتن شرایطی این خاصیت را بدست می‌آورند بررسی شده‌اند.
  • تعداد رکورد ها : 1